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EXCESS THERMODYNAMIC PROPERTIES 
FOR HARD SPHERE FLUIDS IN 
SEVERAL DIMENSIONALITIES 

J. AMOROS and E. VILLAR 

Departurnento de Fisicu Aplicadu, Universidud de Cuntuhria, Suntander, Spain. 

(Received 12 Ju1.v 1989) 

Equations of state of the algebraic type for the hard disk fluid and the hard sphere fluid have been obtained 
from recent simulation data. The introduction of a realistic pole furnishes good agreement with the 
simulation results. The excess thermodynamic properties (entropy, enthalpy and Gibbs free energy) have 
been calculated, together with those of four and five dimensional hard hypersphere fluids whose equations 
of state have been proposed in an earlier work. All the results show excellent compatibility with the 
available information. 

KEY WORDS: Excess thermodynamic properties, hard sphere fluids, equations of state. 

1 INTRODUCTION 

In a recent work' we have proposed distinct equations of state (EOS) which 
adequately represent the behaviour of four- and five-dimensional hard hypersphere 
fluids. Here we complete this study with the treatment of the remaining accesible 
dimensionalities ( d  = 2,3), whose interest is greater owing to their closer approxima- 
tion to the real world. Although Carnahan and Starling2 found an EOS which is 
difficult to improve, the simulation data available at present allow slight modifications 
to be made in order to increase the agreement. 

On the other hand, we have evaluated the excess thermodynamic properties, 
relative to those of an ideal gas at the same temperature and pressure for all possible 
dimensionali ties. 

This allows us to obtain a complete table of the major equilibrium properties for the 
whole stable range of the hard hypersphere fluid. Although these results are not 
comparable with direct experimental data, their validity must be equivalent to, or 
perhaps greater than, the original EOS because the excess entropy depends more on 
the lower-order virial coefficients than on the higher ones, as compared to the EOS3. 

2 THEORETICAL BACKGROUND 

The great majority of the EOS proposed for representing the behaviour of the hard 
sphere fluid may be included in two analytical forms, independently of its dimension- 
ality. 
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52 J.  A M O R O S  A N D  E. VILLAR 

In the first, the compressibility factor 2 = PV/NkT is expressed as the ratio 
between two polynomials, usually in the form: 

m 

z = c u i y i - l / ( l  - y)" 
i = l  

where y is the packing fraction, i.e. the ratio between the geometric volume and the 
volume of the system. In general, y may be expressed as: 

where ug is the volume of a d-dimensional hard hypersphere, CT its diameter and 
p* = Nad/V the reduced density. 

This expression for Z represents mathematically a particular case of a Pade 
approximant4 and includes all the Carnahan-Starling type variants. 

The second form is really an improvement of the former, made by introducing the 
existence of a pole in the compressibility factor for the regular close packing density5. 
This quantity may then be expressed in the form: 

+ c &y'- YlYo + c y d -  Z = l + d  
1 - (Y/Y,) (1  - YId- '  i 

(3) 

where y o  is the regular close packing ratio. This equation has a unique fitting 
parameter C because the others are fixed identifying them with those of the virial 
expansion. 

On the other hand, the expressions corresponding to the excess thermodynamic 
properties depend on the thermodynamic representation employed, that is to say, on 
the thermodynamic variables utilized. In the representation T-P, the resulting excess 
entropy is: 

As this is the representation which is experimentally most accessible, it is the one most 
frequently found in thermodynamics  textbook^^,^. 

However, the T-Vrepresentation is more suitable for our study because the hard 
sphere EOS appears in this form. 

Nevertheless, the difference in the entropy of the two systems is evaluated for the 
same pressures and temperatures. 

The excess entropy is now8: 

dV+ In Z 
s - so 

R 

In our case, this expression allows a later simplification to be made since 2 does not 
depend on the temperature for hard-sphere systems. 
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HARD SPHERE FLUIDS 

Therefore, the final result is: 

53 

s - so y z - 1  
R = l n Z -  jo- Y dY -~ 

The determination of the remaining functions of state is straightforward. In fact, 
since the hard sphere EOS is of the form: P = T f ( V ) ,  from thermodynamics, one finds 
( d U / d V ) ,  = 0 and ( d U / d P ) ,  = 0, then 

u - uo 
RT 

= o  

From this definition: 

F - F a  U - U o  S - S o  
RT R T  R 

- 

and for hard spheres: 

s - so - 
F - Fa 
~~ 

R T  R 

The excess enthalpy and the excess Gibbs free energy are equal to: 

H - H o  U - U o  P V - R T  = z - 1  
R T  

+ - -~ ~~ - 
R T  R T  

= Z - I - l n Z +  G - G o  H - H o  S - S o  
R T  R T  R 

- 

(7) 

(9) 

3 EQUATION O F  STATE 

In this section our results concerning the EOS for each analyzed system are presented 
in order of increasing dimensionality. 

a) Hard Disks 

The first interesting EOS is due to scaled particle theory (SPT)': 

z = 1/(1 - y ) 2  

later modified by Henderson": 

Z = (1 + 0.125y2)/( 1 - y)' 

and Kratky": 

z = ( 1  + O.I12y2)/(1 - y )2  
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54 J. AMOROS A N D  E. VILLAR 

As can be seen, both equations have only one fitting parameter. This parameter is 
fixed in order to obtain minimum deviation of Z from the best available simulation 
data, probably those of Erpenbeck and Luban12. Thus, one obtains: 

Z = (1 + 0.0831 14yz)/(1 - Y ) ~  (15) 

Henderson and Kratky also proposed other equations’3*’ ’ with two parameters: 

1 + 0.128~’ 0 . 0 4 3 ~ ~  _ _ _ _  z= 
(1 - Y)’ 

(1 - Y)2 

(1 - Y I 3  

1 + 0.12802~~ - 0.03003y3 
Z =  

(1 - Y ) j  

Verlet and L e ~ e s q u e ’ ~  have also contributed an equation of the same type: 

1 + 0.125~’ 2-’y4 -~ Z =  
(1 - YI2  (1 - YI4  

Baus and Colot’’ have joined all these equations in the following: 

1 + ay’ Y 3  + c  

(1 - y)2  
z=-- 

(1 - y)’+d 

We have fitted all these equations to the mentioned simulation data and we have 
found the best agreement with Henderson’s expression but with slightly different 
coefficients : 

1 + 0.12651~~ 0.03918~~ z= - 
( 1  - Y)2 (1 - Y)3 

The comparison with the simulation is shown in Table 1. On the other hand, the 
available virial coefficients in this case11.16 set the number of the terms for Eq. (3), 

Table 1 Results of the empirical equations for 
hard disk fluid. 

AIA, 30.0 20.0 10.0 5.0 3.0 

Zsim, 1.06337 1.09743 1.21068 
Z* 1.06344 1.09753 1.21067 
Z** 1.06337 1.09743 1.21068 
A/A, 2.0 1.8 1.6 
Zsi,,,, 3.4243 4.1715 5.4964 
Z* 3.4246 4.1718 5.4958 
Z** 3.4255 4.1727 5.4943 

“Eq. (20); **Eq. (21) 

1.4983 
1.4984 
1.4984 
1.5 
6.6075 
6.6074 
6.6007 

2.077 1 
2.077 1 
2.0773 
1.4 
8.306 
8.3312 
8.31 1 1  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



HARD SPHERE FLUIDS 55  

which is extended until i = 7. Taking into account that d = 2 and yo = rc/2(3)’” = 
0.9069, the related equation is written as: 

~10.9069 Y 
1 - (y/0.9069) 1 - Y  

z = 1 + 2  + 4.950 ____ - 5 . 1 5 5 ~  - 4 . 2 5 4 ~ ~  - 3 . 3 7 4 ~ ~  

- 2 . 5 7 0 ~ ~  - 1 .845y5 - 1 . 1  98y6 (21) 

These results are also shown in Table 1. Here the independent variable utilized was 
the ratio between the area of the system A and that corresponding to regular close 
packing, A , .  Its relation with the original variable y is elementary: 

A I A ,  = 1~/2(3)”~y.  

The reason for this change is due to the direct transcription of the simulation data and 
to the use of simple numbers. 

b )  Hard Spheres 

The majority of empirical EOS are represented by the expression: 

z = ( 1  + + y2 - ay3)/(1 - y)3 (22) 

In fact, taking a = 3, a = 0, a = 1 and a = 1.5, one obtains the Percus-Yevick 
pressure and compressibility equations”, the Carnahan-Starling (CS) equation2 and 
the Mansoori, Provine and Canfield equation’ ’, respectively. 

More recently, Erpenbeck and Wood19 have obtained excellent simulation data, 
which allows it to be checked. Fitting these data to that equation furnishes a = 0.9508 
which is close to the Carnahan-Starling value, confirming once again the superiority 
of their equation. 

An improvement in the results is observed when an additional parameter is 
introduced. Therefore, we have considered an equation of the form: 

z = ( 1  + + y2 - ay3 - by4)/(1 - y)3 (23) 

and we have fitted the parameters to simulation data cited above, obtaining: 
u = 0.64994; b = 0.70034. 

The results are shown in Table 2. 

Table 2 
sphere fluid. 

Results for the empirical equations for hard 

Zsim. 
Z* 
Z** 

25 

1.12777 
1.12775 
I .  12786 
3 
3.03114 
3.03 190 
3.03137 

18 10 

1.18282 1.35939 
1.18283 1.35942 
1.18284 1.35943 
2 1.8 
5.85016 7.43040 
5.8505 1 7.42969 
5.83892 7.37313 

5 

1.88839 
1.88849 
1.88848 
1.7 
8.60034 
8.60014 
8.55994 

4 

2.24356 
2.24438 
2.2443 1 
1.6 
10.19308 
10.19399 
10.13040 

*Eq. (23); **Eq. (24) 
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56 J .  AMOROS A N D  E. VILLAR 

The virial 
Therefore, equation (3) is expressed here as: 

are known to the same extent as in the case of hard disks. 

y/O. 7405 
Z = 1 + 3  + 5.6386(y2/(1 - Y ) ~ )  - 0.05142~ - 1 . 1 0 9 9 ~ ~  

1 - (y/0.7405) 

- 0 . 3 0 1 3 ~ ~  + 1 . 3 3 0 2 ~ ~  + 3 . 8 0 3 4 ~ ~  + 9 . 7 2 3 5 ~ ~  (24) 

where d = 3; yo = (2)”2n/6 = 0.7405. 
The results are also shown in Table 2. They are reported for the variable 

VV, = 21’2n/6y. 
Although the first procedure provides better agreement with the simulation data for 

both hard disks and hard spheres, this trend may not hold in the range of the 
metastable fluid because the influence of the pole increases. To our knowledge, no 
simulation has been carried out in this range for hard disks, but Woodcockz1 
performed an interesting study on hard spheres for the metastable fluid and even for 
glass. In this context, we have verified the validity of our statement although the fast 
increase of the compressibility factor also implies an increase in the dispersion of the 
simulation. 

c) 

As we pointed out earlier, research on the EOS for these systems was presented in a 
recent work’ of the authors. 

Four and Five Dimensional Hard Hyperspheres 

4 EXCESS PROPERTIES 

Using the EOS developed in the earlier sections, we have evaluated the excess entropy, 
excess enthalpy and excess Gibbs free energy by developing the expressions (6), (10) 
and (1 1). When the different EOS that have been proposed are analyzed, the results 
differ among themselves by less than 1 %. Therefore, we furnish only one numerical 
value in each case. Moreover, the absence of direct experimental data does not allow a 

Table 3 Excess quantities for hard disk fluid. 

s - so H - H o  G - GO 
x 104 ~ x 103 ~ x 103 RT RT 4‘40 7 

30.0 -4.7 63.4 63.9 
20.0 - 10 97.5 98.5 
10.0 -42 21 1 215 
5.0 -200 498 518 
3.0 -714 1080 1150 
2.0 -2300 2420 2650 
1.8 -3250 3170 3 500 
1.6 -4940 4490 4990 
1.5 -6340 5600 6240 
1.4 -8450 7320 8170 
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HARD SPHERE FLUIDS 57 

more rigorous analysis. Our values agree very well with those carried out by 
Carnahan and Starling3 using their equation for hard spheres, and with those made 
by these authors with some other available equations. 

On the other hand, all the results show two features that stand out: 1) the absolute 
value of the differences tends to zero when the volume increases; 2) such differences 
are always negative for the entropy, which is intuitively evident. 

The corresponding results are shown in Tables 3, 4, 5 and 6 .  

Table 4 Excess quantities for hard sphere fluid. 

25 -2.8 
18 -5.5 
10 - 19.3 
5 -90.2 
4 -153 

2 -938 
1.8 - 1290 
1.7 -1540 
1.6 -1880 

3 -311 

G - GO 
x lo2 

H - H o  
R T  

x to2 RT 

12.8 13.1 
18.3 18.8 
35.9 37.9 
88.8 97.9 
124 140 
203 234 
484 578 
640 769 
758 912 
916 1100 

Table 5 
hard hypersphere fluid. 

Excess quantities for four dimensional 

s - so H - Ha G - Go 
x 102 ~ x 10 ~ x 10 P* ~ R T  R T  R 

0.20 -6.89 6.31 7.06 
0.40 -31.1 16.7 19.8 
0.60 -79.0 33.3 41.2 
0.80 - 160 60.2 76.2 
0.90 -217 79.6 101 
0.95 -251 91.3 116 
1.00 -289 104.7 t 30 

Table 6 Excess quantities for five dimensional 
hard hypersphere fluid. 

s - so H - H o  G - Go 
x 10 ~ x 10 x 102 ~ 

R T  
__ 

R R T  

0.20 -8.51 
0.40 -35.4 
0.60 -83.0 

1.00 -256 
1.10 -320 

1.18 -378 

0.80 - 155 

1.15 -356 

6.53 
16.2 
30.1 
49.9 
77.8 
95.5 
106 
112 

7.38 
19.7 
38.4 
65.4 
103 
128 
141 
150 
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